
ObjTables documentation
Release 1.0.14

Jonathan Karr, Arthur Goldberg

Sep 08, 2020





Contents

1 Contents 3
1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Installing the latest release from PyPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Installing the latest revision from GitHub . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4 Installing the optional features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.5 Configuring access to GitHub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Migration a dataset between versions of its schema . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Configuring migrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.4 Topological sort of schema changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.5 Migration protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.6 Using migration commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.7 Known limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 About . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.1 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.2 Development team . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.3 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.4 Questions and comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

i



ii



ObjTables documentation, Release 1.0.14

ObjTables is a toolkit which makes it easy to use spreadsheets (e.g., XLSX workbooks) to work with complex datasets
by combining spreadsheets with rigorous schemas and an object-relational mapping system (ORM; similar to Active
Record (Ruby), Django (Python), Doctrine (PHP), Hibernate (Java), Propel (PHP), SQLAlchemy (Python), etc.). This
combination enables users to use programs such as Microsoft Excel, LibreOffice Calc, and OpenOffice Calc to view
and edit spreadsheets and use schemas and the ObjTables software to validate the syntax and semantics of datasets,
compare and merge datasets, and parse datasets into object-oriented data structures for further querying and analysis
with languages such as Python.

ObjTables makes it easy to:

• Use collections of tables (e.g., an XLSX workbook) to represent complex data consisting of multiple related
objects of multiple types (e.g., rows of worksheets), each with multiple attributes (e.g., columns).

• Use complex data types (e.g., numbers, strings, numerical arrays, symbolic mathematical expressions, chemical
structures, biological sequences, etc.) within tables.

• Use programs such as Excel and LibreOffice as a graphical interface for viewing and editing complex datasets.

• Use embedded tables and grammars to encode relational information into columns and groups of columns of
tables.

• Define clear schemas for tabular datasets.

• Use schemas to rigorously validate tabular datasets.

• Use schemas to parse tabular datasets into data structures for further analysis in languages such as Python.

• Compare, merge, split, revision, and migrate tabular datasets.

The ObjTables toolkit includes five components:

• Format for schemas for tabular datasets

• Numerous data types

• Format for tabular datasets

• Software tools for parsing, validating, and manipulating tabular datasets

• Python package for more flexibility and anal

Please see https://www.objtables.org for an overview of ObjTables and https://sandbox.karrlab.org/tree/obj_tables for
interactive tutorials for the ObjTables Python API. This website contains documentation for ObjTables migrations and
the ObjTables Python API.

Contents 1

https://www.objtables.org
https://sandbox.karrlab.org/tree/obj_tables


ObjTables documentation, Release 1.0.14

2 Contents



CHAPTER 1

Contents

1.1 Installation

The following is a brief guide to installing the ObjTables Python API and command line program. The Dockerfile in
the ObjTables Git repository contains detailed instructions for how to install ObjTables in Ubuntu Linux.

1.1.1 Prerequisites

First, install the following third-party packages:

• ChemAxon Marvin (optional): to calculate major protonation and tautomerization states

– Java >= 1.8

• Git (optional): to revision schemas and datasets

• Graphviz (optional): to generate UML diagrams of schemas

• Open Babel (optional): to represent and validate chemical structures

• Pip >= 18.0

• Python >= 3.6

• SSH (optional): to use Git with SSH to revision schemas and datasets

To use ChemAxon Marvin, set JAVA_HOME to the path to your Java virtual machine (JVM) and add Marvin to the
Java class path:

export JAVA_HOME=/usr/lib/jvm/default-java
export CLASSPATH=$CLASSPATH:/opt/chemaxon/marvinsuite/lib/MarvinBeans.jar

1.1.2 Installing the latest release from PyPI

Second, we recommend that users run the following command to install the latest release of ObjTables from PyPI:

3

https://github.com/KarrLab/obj_tables/blob/master/Dockerfile
https://chemaxon.com/products/marvin
https://www.java.com
https://git-scm.com/
https://www.graphviz.org/
https://openbabel.org
https://pip.pypa.io
https://www.python.org
https://www.ssh.com/ssh


ObjTables documentation, Release 1.0.14

pip install obj_tables

1.1.3 Installing the latest revision from GitHub

We recommend that developers use the following commands to install the latest revision of ObjTables and its depen-
dencies from GitHub:

pip install git+https://github.com/KarrLab/pkg_utils.git#egg=pkg_utils
pip install git+https://github.com/KarrLab/wc_utils.git#egg=wc_utils[chem]
pip install git+https://github.com/KarrLab/bpforms.git#egg=bpforms
pip install git+https://github.com/KarrLab/bcforms.git#egg=bcforms
pip install git+https://github.com/KarrLab/obj_tables.git#egg=obj_tables

1.1.4 Installing the optional features

ObjTables includes several optional features:

• bio: Biology attributes for sequences, sequence features, and frequency position matrices (obj_tables.bio)

• chem: Chemistry attributes for chemical formulas and structures (obj_tables.chem)

• grammar: Encoding/decoding objects and their relationships into and out of individual cells in tables
(obj_tables.grammary)

• math: Mathematics attributes for arrays, tables, and symbolic expressions (obj_tables.math)

• web: Web service (obj_tables.web_service)

• revisioning: Revisioning schemas and data sets with Git (obj_tables.migrate)

• sci: Science attributes for units, quantities, uncertainty, ontology terms, and references (obj_tables.sci)

• viz: Methods to generate UML diagrams of schemas (obj_tables.utils.viz_schema())

These features can be installed by installing ObjTables with the desired options. For example, the bio and chem
features can installed by running one of the following commands:

pip install obj_tables[bio,chem]
pip install git+https://github.com/KarrLab/obj_tables.git#egg=obj_tables[bio,chem]

1.1.5 Configuring access to GitHub

To use the revisioning and migration features, developers must configure ObjTables to access GitHub.

• Install the revisioning features by running pip install obj_tables[revisioning].

• Generate an API token for GitHub.

• Create the directory ~/.wc/ (Ubuntu: /home/<username>/.wc, Windows:
c:\Users\<username>\.wc\).

• Create the file ~./wc/wc_utils.cfg with the following content:

[wc_utils]
[[github]]

github_api_token = <GitHub API token>

4 Chapter 1. Contents

https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token


ObjTables documentation, Release 1.0.14

• Follow these steps to configure SSH access GitHub:

– Follow these instructions to generate an SSH key and add it to your GitHub account

– Create the file ~/.gitconfig (Ubuntu: /home/<username>/.gitconfig, Windows:
c:\Users\<username>\.gitconfig\) with the following content:

[url "ssh://git@github.com/"]
insteadOf = https://github.com/

1.2 Migration a dataset between versions of its schema

1.2.1 Overview

Consider some data whose structure (also known as its data model) is defined by a schema written in a data definition
language. For example, the structure of an SQL database is defined by a schema written in SQL’s Structured query
language.

When a schema is updated then existing data must be changed so that its structure complies with the updated schema.
This is called data migration. Many systems, including database systems and web software frameworks, provide tools
that automate data migration so that users can avoid the tedious and error-prone manual effort that’s usually required
when a schema is changed and large amounts of data must be migrated.

Packages that use ObjTables (obj_tables) store data in CSV, TSV, or XLSX files. The structure of the data in a file
is defined by a schema that uses obj_tables. ObjTables migration enables automated migration of these data files.

This page explains the concepts of ObjTables migration and provides detailed instructions on how to configure and
use it.

1.2.2 Concepts

ObjTables migration automates the process of migrating data files that use a schema which has been updated.

Migration assumes that data files which are migrated and the schemas that define their data models are
stored in Git repositories. The repository storing the data files is called the data repo while the repos-
itory containing the schema is the schema repo. While these are typically two distinct repositories, mi-
gration also supports the situation in which one repository is both the data repo and the schema repo.

Figure 1.1: Dependencies among Git repositories involved in data migration. The schema repo uses
obj_tables to define a schema. The data repo stores data files that use the data model defined in the schema
repo.

Migration
fur-
ther
as-
sumes
that
the
schema
de-
fined
in
a
schema
repo
is

1.2. Migration a dataset between versions of its schema 5

https://help.github.com/en/github/authenticating-to-github/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://en.wikipedia.org/wiki/Data_definition_language#Structured_Query_Language_(SQL)
https://en.wikipedia.org/wiki/Data_definition_language#Structured_Query_Language_(SQL)


ObjTables documentation, Release 1.0.14

stored
in
a
sin-

gle Python file, which is called the schema file. Because it’s stored in a Git repository, the schema file’s version history
is recorded in the schema repo’s commits, which are used by migration. Figure 1.2 below illustrates these concepts.

Figure 1.2: Example migration of file biomodel_x.xlsx. Three Git repositories are involved: obj_tables,
wc_lang, and biomodel_x. Time increases upward, and within any repository later commits depend on earlier
ones. wc_lang is a schema repo that defines the data model for files stored in the data repo biomodel_x. The
earliest illustrated commit of biomodel_x contains a version of biomodel_x.xlsx that depends on the earliest
commit of wc_lang, as indicated by the dashed arrow. Two commits update wc_lang. If these commits modify
wc_lang’s schema, then biomodel_x.xlsx must be migrated. The migration (solid purple arrow) automatically
makes the data in biomodel_x.xlsx consistent with the latest commit of wc_lang.

We decompose the ways in which a schema can be changed into these categories:

• Add a obj_tables.core.Model (henceforth, Model) definition

• Remove a Model definition

• Rename a Model definition

• Add an attribute to a Model

• Remove an attribute from a Model

• Rename an attribute of a Model

• Apply another type of changes to a Model

Migration automatically handles all of these change categories except the last one, as illustrated in Figure 1.3. Adding
and removing Model definitions and adding and removing attributes from Models are migrated completely automati-
cally. If the names of Models or the names of Model attributes are changed, then configuration information must be
manually supplied because the relationship between the initial and final names cannot be determined automatically
when multiple names are changed. Other types of modifications can be automated by custom Python transformation
programs, which are described below.

The code below contains a schema that’s defined using ObjTables. This documentation employs it as the schema for
an example data file before migration, and refers to it as the existing schema:

from obj_tables import (Model, SlugAttribute, StringAttribute,
FloatAttribute, PositiveIntegerAttribute)

(continues on next page)

6 Chapter 1. Contents



ObjTables documentation, Release 1.0.14

Figure 1.3: Types of schema changes. Changes that add or delete Models or Model attributes are handled automatically
by migration. Changing the name of a Models or attributes must be annotated in a manually edited configuration file.
Changes that do not fall into these categories must be handled by a custom Python transformations module that
processes each Model as it is migrated.

(continued from previous page)

class Test(Model):
id = SlugAttribute()
name = StringAttribute(default='test')
existing_attr = StringAttribute()
size = FloatAttribute()
color = StringAttribute()

class Property(Model):
id = SlugAttribute()
value = PositiveIntegerAttribute()

This example shows a changed version of the existing schema above, and we refer to it as the changed schema:

from obj_tables import Model, SlugAttribute, StringAttribute, IntegerAttribute

class ChangedTest(Model): # Model Test renamed to ChangedTest
id = SlugAttribute()
name = StringAttribute(default='test')
# Attribute Test.existing_attr renamed to ChangedTest.migrated_attr
migrated_attr = StringAttribute()
# Attribute ChangedTest.revision added
revision = StringAttribute(default='0.0')
# Type of attribute Test.size changed to an integer
size = IntegerAttribute()
# Attribute Test.color removed

# Model Property removed

# Model Reference added

class Reference(Model):
id = SlugAttribute()
value = StringAttribute()

1.2. Migration a dataset between versions of its schema 7



ObjTables documentation, Release 1.0.14

1.2.3 Configuring migrations

To make migration easier and more reliable the durable state used by migration in schema repos and data repos is
recorded in configuration files.

Sentinel commits

To organize the changes in a schema repo into manageable groups, migration identifies sentinel commits that delimit
sets of commits that change the schema. Considering the repo’s commit dependency graph, sentinel commits must be
located in the graph so that each commit which changes the schema depends on exactly one upstream sentinel commit,
and is an ancestor of exactly one downstream sentinel commit (see Figure 1.4). In addition, a sentinel commit can have
at most one ancestor sentinel commit that’s reachable without traversing another sentinel commit. All the commits
that are ancestors of a sentinel commit and depend upon the sentinel commit’s closest ancestor sentinel commit are
members of the sentinel commit’s domain. In addition, a sentinel commit is a member of its own domain. We use the
term domain to describe both commits and the changes to the schema made by the commits.

Migration migrates a data file across a sequence of sentinel commits.

Sentinel commit configurations that violate the constraints in the first paragraph of this section create Git histories that
cannot be migrated. For an example, see Figure 1.5.

Configuration files

Schema repos contain three types of configuration files (Table 1.1):

• A schema changes file identifies a sentinel commit, and annotates the changes to the schema in the sentinel
commit’s domain. Symmetrically, each sentinel commit must be identified by one schema changes file.

• A transformations file defines a Python class that performs user-customized transformations on Models during
migration.

• A custom_io_classes.py file in a schema repo gives migration handles to the schema’s Reader and/or
Writer classes so they can be used to read and/or write data files that use the schema.

Since committed changes in a repository are permanent, the schema changes and transformations files provide perma-
nent documentation of these changes for all migrations over the changes they document.

Data repos contain just one type of configuration file (Table 1.2):

• A data-schema migration configuration file details the migration of a set of data files in the data repo.

Table 1.1 and Table 1.2 describe these user-customized configuration files and code fragments in greater detail.

8 Chapter 1. Contents



ObjTables documentation, Release 1.0.14

Figure 1.4: Sentinel commits in schema repo commit histories. Commits that do not change the schema may be
present, but are not involved in migration. Each sentinel commit delimits the downstream boundary of a set of commits.
In A, the changes in commits a and b will be applied to data being migrated from sentinel s1 to sentinel s2. B illustrates
a Git history created by branching or concurrent clones, but the commits a, b, and d still depend on exactly one
upstream sentinel commit, s1, and are ancestors of exactly one downstream sentinel commit, s2.

1.2. Migration a dataset between versions of its schema 9



ObjTables documentation, Release 1.0.14

Figure 1.5: Sentinel commits in a schema repo commit history that cannot be migrated.

Table 1.1: Configuration files in schema repos
File type File use File location Filename format File

for-
mat

Schema
changes

Associated with a specific
commit in the schema repo;
documents changes in the
schema repo since the previ-
ous commit annotated by a
Schema changes file

Stored in the migrations
directory in the schema repo,
which is automatically cre-
ated if necessary

schema_changes_{}_{}.
yaml, where the {} place-
holders are replaced with the
file’s creation timestamp and
the prefix of the commit’s git
hash, respectively

YAML

Custom IO
classes

Load a Reader and/or
Writer class from the
schema repo that Migration
will use to read and/or write
files whose data models are
defined by the schema; if
custom_io_classes.
py does not exist or doesn’t
define Reader or Writer
the default obj_tables.
io.Reader/Writer will
be used

Stored in the <package
name>/migrations
directory in the schema
repo, where <package
name> is the root directory
of the python package in the
schema repo

Must be called
custom_io_classes.
py

Python

TransformationsDefine methods that can ap-
ply arbitrary transformation
to each Model during migra-
tion

Stored in a filename rela-
tive to the migrations
directory, specified by the
transformations_file
field in a schema changes file

Any Python file Python

10 Chapter 1. Contents



ObjTables documentation, Release 1.0.14

Table 1.2: The configuration file in data repos
File type Data-schema migration configuration file
File use Configure the migration of a set of files in a data repo whose data models are defined by

the same schema in a schema repo
File location Stored in the migrations directory in the schema repo, which is automatically created if

necessary
Filename format data_schema_migration_conf--{}--{}--{}.yaml, where the format place-

holders are replaced with 1) the name of the data repo, 2) the name of the schema repo, and
3) a datetime value

File format YAML

Example configuration files

This section presents examples of migration configuration files and code fragments that would be used to migrate data
files from the existing schema to the changed schema above.

This example Schema changes file documents the changes between the existing and changed schema versions above:

# schema changes file
# stored in 'schema_changes_2019-03-26-20-16-45_820a5d1.yaml'

commit_hash: 820a5d1ac8b660b9bdf609b6b71be8b5fdbf8bd3
renamed_attributes: [[[Test, existing_attr], [ChangedTest, migrated_attr]]]
renamed_models: [[Test, ChangedTest]]
transformations_file: 'example_transformation.py'

All schema changes files contain these fields: commit_hash, renamed_models, renamed_attributes, and
transformations_file.

• commit_hash is the hash of the sentinel Git commit that the Schema changes file annotates. That is, as
illustrated in Figure 1.6, the commit identified in the Schema changes file must depend on all commits that
modified the schema since the closest upstream sentinel commit.

• renamed_models is a YAML list that documents all Models in the schema that were renamed. Each renaming
is given as a pair of the form [ExistingName, ChangedName].

• renamed_attributes is a YAML list that documents all attributes in the schema that were renamed.
Each renaming is given as a pair in the form [[ExistingModelName, ExistingAttrName],
[ChangedModelName, ChangedAttrName]]. If the Model name hasn’t changed, then
ExistingModelName and ChangedModelName will be the same. transformations_file
optionally documents the name of a Python file that contains a class which performs custom transformations on
all Model instances as they are migrated.

As shown in Figure 1.6, by default, a schema changes file identifies the head commit as the sentinel commit that it
annotates. However, a schema changes file may identify a sentinel commit further back in the dependency graph. The
identification is implemented by storing the sentinel commit’s hash in the schema changes file’s commit_hash.

The changes between the existing and the changed schemas are separated into three commits, a, b, and c. a and
b must both occur before c, because a and b both access Model Test whereas c renames Model Test to Model
ChangedTest. Both alternative commit histories both satisfy these constraints.

Template schema changes files are generated by the CLI command make-changes-template, as described be-
low.

This example transformations file contains a class that converts the floats in attribute Test.size into ints:

1.2. Migration a dataset between versions of its schema 11



ObjTables documentation, Release 1.0.14

Figure 1.6: Example schema changes for the updates from the existing to the changed schema above. This figure
illustrates alternative Git histories of the schema changes and migration annotations that could occur when updating
the schema repo to reflect the changes between the existing and the changed schemas above.

12 Chapter 1. Contents



ObjTables documentation, Release 1.0.14

# an example transformations program
from obj_tables.migrate import MigrationWrapper, MigratorError

class TransformationExample(MigrationWrapper):

def prepare_existing_models(self, migrator, existing_models):
""" Prepare existing models before migration

Convert ``Test.size`` values to integers before they are migrated

Args:
migrator (:obj:`Migrator`:) the :obj:`Migrator` calling this method
existing_models (:obj:`list` of :obj:`obj_tables.Model`:) the models

that will be migrated
"""
try:

for existing_model in existing_models:
if isinstance(existing_model, migrator.existing_defs['Test']):

existing_model.size = int(existing_model.size)
except KeyError:

raise MigratorError("KeyError: cannot find model 'Test' in existing
→˓definitions")

def modify_migrated_models(self, migrator, migrated_models):
""" Modify migrated models after migration

Args:
migrator (:obj:`Migrator`:) the :obj:`Migrator` calling this method
migrated_models (:obj:`list` of :obj:`obj_tables.Model`:) all models

that have been migrated
"""
pass

# a MigrationWrapper subclass instance must be assigned to :obj:`transformations`
transformations = TransformationExample()

Transformations are subclasses of obj_tables.migrate.MigrationWrapper. Model instances can be con-
verted before or after migration, or both. The prepare_existing_models method converts models before mi-
gration, while modify_migrated_models converts them after migration. Both methods have the same signature.
The migrator argument provides an instance of obj_tables.migrate.Migrator, the class that performs
migration. Its attributes provide information about the migration. E.g., this code uses migrator.existing_defs
which is a dictionary that maps each Model’s name to its class definition to obtain the definition of the Test class.

This example custom_io_classes.py file configures a migration of files that use the wc_lang schema to use
the wc_lang.io.Reader:

""" Import wc_lang's Reader so it can be used by obj_tables migration
of wc_lang model files """

# this file is imported by obj_tables/migrate.py
from wc_lang.io import Reader # noqa: F401

In general, a custom_io_classes.py file will be needed if the schema repo defines its own Reader or Writer
classes for data file IO.

This example data-schema migration configuration file configures the migration of one file, data_file_1.xlsx.

1.2. Migration a dataset between versions of its schema 13



ObjTables documentation, Release 1.0.14

# data-schema migration configuration file

# description of the attributes:
# 'files_to_migrate' contains paths to files in the data repo to migrate
# 'schema_repo_url' contains the URL of the schema repo
# 'branch' contains the schema's branch
# 'schema_file' contains the relative path to the schema file in the schema repo
files_to_migrate: [../data/data_file_1.xlsx]
schema_file: '../obj_tables_test_migration_repo/core.py'
schema_repo_url: 'https://github.com/KarrLab/obj_tables_test_migration_repo'
branch: 'master'

All data-schema migration config files contain four fields:

• files_to_migrate contains a list of paths to files in the data repo that will be migrated

• schema_repo_url contains the URL of the schema repo

• branch contains the schema repo’s branch

• schema_file contains the path of the schema file in the schema repo relative to its URL

Migration commands create data-schema migration configuration and schema changes files, as listed in Table 1.3
below.

Schema Git metadata in data files

Each data file in the data repo must contain a Model that documents the version of the schema repo upon which the file
depends. For migration to work properly this version must be a sentinel commit in the schema repo. This Git metadata
is stored in a SchemaRepoMetadata Model (which will be in a Schema repo metadata worksheet in an XLSX file).
The metadata specifies the schema’s version with its URL, branch, and commit hash. A migration of the data file will
start at the specified commit in the schema repo. An example Schema repo metadata worksheet in an XLSX file is
illustrated below:

Figure 1.7: Example Schema repo metadata worksheet in an XLSX data file. This schema repo metadata provides the
point in the schema’s commit history at which migration of the data file would start.

Migration migrates a data file from the schema commit identified in the file’s schema’s Git metadata to the last sentinel
commit in the schema repo.

1.2.4 Topological sort of schema changes

The migration of a data file modifies data so that its structure is consistent with the schema changes saved in Git
commits in the schema repo. Because the dependencies between commits cannot be circular, the dependency graph of
commits is a directed acyclic graph (DAG).

14 Chapter 1. Contents



ObjTables documentation, Release 1.0.14

Migration executes this algorithm:

def migrate_file(existing_filename, migrated_filename, schema_repo):
""" Migrate the models in `existing_filename` according to the

schema changes in `schema_repo`, and write the results in `migrated_filename`.
"""

# get_schema_commit() reads the Schema repo metadata in the file,
# and obtains the corresponding commit
starting_commit = get_schema_commit(existing_filename)
# obtain the schema changes that depend on `starting_commit`
schema_changes = schema_repo.get_dependent_schema_changes(starting_commit)

# topologically sort schema_changes using dependencies in the schema repo's
→˓commit DAG

ordered_schema_changes = schema_repo.topological_sort(schema_changes)
existing_models = read_file(filename)
existing_schema = get_schema(starting_commit)

# iterate over the topologically sorted schema changes
for schema_change in ordered_schema_changes:

end_commit = schema_change.get_commit()
migrated_schema = get_schema(end_commit)
# migrate() migrates existing_models from the existing_schema to the migrated_

→˓schema
migrated_models = migrate(existing_models, existing_schema, migrated_schema)
existing_models = migrated_models
existing_schema = migrated_schema

write_file(migrated_filename, migrated_models)

A topological sort of a DAG finds a sequence of nodes in the DAG such that if node X transitively depends on node
Y in the DAG then X appears after Y in the sequence. Topological sorts are non-deterministic because node pairs that
have no transitive dependency relationship in the DAG can appear in any order in the sequence. For example, a DAG
with the edges A → B → D, A → C → D, can be topologically sorted to either A → B → C → D or A → C → B →
D.

Sentinel commits must must therefore be selected such that any topological sort of them produces a legal migration.
We illustrate incorrect and correct placement of sentinel commits in Figure 1.8.

1.2.5 Migration protocol

As discussed above, using migration involves creating configuration files at various times in the schema and data repos,
and then migrating data files. This section summarizes the overall protocol users should follow to migrate data.

Configuring migration in a schema repository

Schema builders are responsible for these steps.

1. Make changes to the schema, which may involve multiple commits and multiple branches or concurrent reposi-
tory clones

2. Confirm that the schema changes work and form a set of related changes

3. Git commit and push the schema changes; the last commit will be a sentinel commit

4. Use the make-changes-template command to create a template schema changes file

1.2. Migration a dataset between versions of its schema 15

https://en.wikipedia.org/wiki/Topological_sorting


ObjTables documentation, Release 1.0.14

Figure 1.8: Placement of schema changes commits in a Git history (this figure reuses the legend in Figure 1.6).
Migration topologically sorts the commits annotated by the schema changes files (indicated by thick outlines). In A,
since the blue diamond commit and green pentagon commit have no dependency relationship in the Git commit DAG,
they can be sorted in either order. This non-determinism is problematic for a migration that uses the commit history
in A: if the diamond commit is sorted before the pentagon commit, then migration to the pentagon commit will fail
because it accesses Model Test which will no longer exist because migration to the diamond commit renames Test
to ChangedTest. No non-determinism exists in B because the commits annotated by the schema changes files – x
and y – are related by x → y in the Git commit DAG. A migration of B will not have the problem in A because the
existing Modelss that get accessed by the transformation above will succeed because it uses the schema defined by the
top commit.

16 Chapter 1. Contents



ObjTables documentation, Release 1.0.14

5. Determine the ways in which Models and attributes were renamed in step 1 and document them in the template
schema changes file

6. Identify any other model changes that require a transformation (as shown in Figure 1.3); if they exist, create
and test a transformations module, and provide its filename as the transformations_file in the schema
changes file

7. Git commit and push the schema changes file, and transformations module, if one was created

8. Test the new schema changes file by migrating a data file that depends (using its schema Git metadata as in
Figure 1.7) on the version of the schema that existed before the changes in step 1

While this approach identifies sentinel commits and creates template schema changes files immediately after the
schema has been changed, that process can be performed later, as

Migration of data files in a data repository

People who use ObjTables schemas, such as whole-cell modelers, should follow one of these sequences of steps to
migrated files.

Migrate arbitrary data files

1. Decide to migrate some data files

2. Git commit and push the data repo to backup all data files on the Git server

3. Use the migrate-data command to migrate the files; the migrated files will overwrite the initial existing
files

Use a data-schema migration configuration file to migrate data files

1. Decide to migrate some data files

2. If a data-schema migration configuration file for the files does not exist, use the
make-data-schema-migration-config-file command to make one

3. Git commit and push the data repo to backup all data files on the Git server

4. Use the do-configured-migration command to migrate the files; the migrated files will overwrite the
initial existing files

1.2.6 Using migration commands

Migration commands are run via the wholecell command line interface program wc-cli on the command line. As
listed in Table 1.3, different commands are available for schema repos and data repos.

Table 1.3: Migration commands
RepositoryCommand Purpose
schema make-changes-templateCreate a template schema changes file
data migrate-data Migrate specified data files (without using a data-schema migration configura-

tion file)
data do-configured-migrationMigrate the data files specified in a data-schema migration config file
data make-data-schema-migration-config-fileCreate a data-schema migration configuration file

1.2. Migration a dataset between versions of its schema 17



ObjTables documentation, Release 1.0.14

Schema repo migration commands

wc_lang (abbreviated lang) is a schema repo. All schema repos will support this command.

The make-changes-template command creates a template Schema changes file. By default, it creates a Schema
changes template in the schema repo that contains the current directory. To use another schema repo, specify a
directory in it with the --schema_repo_dir option.

By default, the Schema changes template created identifies the most recent commit in the schema repo as a sentinel
commit. To have the Schema changes file identify another commit as the sentinel, provide its hash with the --commit
option. This makes it easy to add a schema changes file that identifies an older commit as a sentinel commit, after
making other commits downstream from the sentinel.

make-changes-template initializes commit_hash in the template as the sentinel commit’s hash. The hash’s
prefix also appears in the file’s name. The format of the fields renamed_models, renamed_attributes, and
transformations_file is written, but their data must be entered manually.

usage: wc-cli tool lang make-changes-template [-h]
[--schema_repo_dir SCHEMA_REPO_DIR]
[--commit COMMIT]

Create a template schema changes file

optional arguments:
--schema_repo_dir SCHEMA_REPO_DIR

path of the directory of the schema's repository;
defaults to the current directory

--commit COMMIT hash of a commit containing the changes; default is
most recent commit

Data repo migration commands

wc_sim (abbreviated sim) is a data repo. All data repos will support the same commands.

The make-data-schema-migration-config-file command creates a data-schema migration configura-
tion file. It must be given the full URL of the Python schema file in its Git repository, including its branch. For
example https://github.com/KarrLab/wc_lang/blob/master/wc_lang/core.py is the URL of
the schema in wc_lang. It must also be given the absolute or relative path of at least one data file that will be mi-
grated when the data-schema migration config file is used. The config file can always be edited to add, remove or
changes data files.

By default, make-data-schema-migration-config-file assumes that the current directory is contained in
a clone of the data repo that will be configured in the new migration config file. A different data repo can be specified
by using the --data_repo_dir option.

usage: wc-cli tool sim make-data-schema-migration-config-file
[-h] [--data_repo_dir DATA_REPO_DIR]
schema_url file_to_migrate [file_to_migrate ...]

Create a data-schema migration configuration file

positional arguments:
schema_url URL of the schema in its Git repository,

including the branch
file_to_migrate a file to migrate

optional arguments:

(continues on next page)

18 Chapter 1. Contents



ObjTables documentation, Release 1.0.14

(continued from previous page)

--data_repo_dir DATA_REPO_DIR
path of the directory of the repository storing the
data file(s) to migrate; defaults to the current
directory

The do-configured-migration command migrates the data files specified in a data-schema migration config
file. Each data file that’s migrated is replaced by its migrated file.

usage: wc-cli tool sim do-configured-migration [-h] migration_config_file

Migrate data file(s) as configured in a data-schema migration
configuration file

positional arguments:
migration_config_file

name of the data-schema migration configuration file to use

The migrate-data command migrates specified data file(s). Like make-data-schema-migration-config-file,
it must be given the full URL of the Python schema file in its Git repository, including its branch, and the absolute or
relative path of at least one data file to migrate. By default, migrate-data assumes that the current directory is
contained in a clone of the data repo that contains the data files to migrate. A different data repo can be specified by
using the --data_repo_dir option. Each data file that’s migrated is replaced by its migrated file.

usage: wc-cli tool sim migrate-data [-h] [--data_repo_dir DATA_REPO_DIR]
schema_url file_to_migrate
[file_to_migrate ...]

Migrate specified data file(s)

positional arguments:
schema_url URL of the schema in its Git repository,

including the branch
file_to_migrate a file to migrate

optional arguments:
--data_repo_dir DATA_REPO_DIR

path of the directory of the repository storing the
data file(s) to migrate; defaults to the current
directory

Practical considerations

The user must have access rights that allow them to clone the data repo and schema repo.

1.2.7 Known limitations

As of August 2019, the implementation of migration has these limitation:

• Migration requires that schemas and data files be stored in Git repositories – no other version control systems
are supported.

• Only one schema file per schema repo is supported.

• Migration of large data files runs slowly.

1.2. Migration a dataset between versions of its schema 19



ObjTables documentation, Release 1.0.14

• Options that store a migrated file in a different location than its data file are not exposed at the command line.

1.3 About

1.3.1 License

The software is released under the MIT license

The MIT License (MIT)

Copyright (c) 2017-2020 ObjTables developers

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

1.3.2 Development team

This package was developed by the Karr Lab at the Icahn School of Medicine at Mount Sinai in New York, US and
the Applied Mathematics and Computer Science, from Genomes to the Environment research unit at the National
Research Institute for Agriculture, Food and Environment in Jouy en Josas, FR.

• Jonathan Karr

• Arthur Goldberg

• Wolfram Liebermeister

• John Sekar

• Bilal Shaikh

1.3.3 Acknowledgements

This work was supported by a National Institute of Health P41 award (P41EB023912), a National Institute of Health
MIRA R35 award (R35GM119771), and a National Science Foundation INSPIRE award (1649014).

1.3.4 Questions and comments

Please contact the developers with any questions or comments.

20 Chapter 1. Contents

https://www.karrlab.org/
https://maiage.inra.fr/
https://www.karrlab.org/
https://www.mountsinai.org/profiles/arthur-p-goldberg
http://genome.jouy.inra.fr/~wliebermeis/index_en.html
https://www.linkedin.com/in/john-sekar/
https://www.bshaikh.com/
mailto:info@objtables.org

	Contents
	Installation
	Prerequisites
	Installing the latest release from PyPI
	Installing the latest revision from GitHub
	Installing the optional features
	Configuring access to GitHub

	Migration a dataset between versions of its schema
	Overview
	Concepts
	Configuring migrations
	Topological sort of schema changes
	Migration protocol
	Using migration commands
	Known limitations

	About
	License
	Development team
	Acknowledgements
	Questions and comments



